Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition
نویسندگان
چکیده
منابع مشابه
Subspace Classifiers in Recognition of Handwritten Digits
This thesis consists of two parts. The first part reviews the general structure of a pattern recognition system and, in particular, various statistical and neural classification algorithms. The presentation then focuses on subspace classification methods that form a family of semiparametric methods. Several improvements on the traditional subspace classification rule are presented. Most importa...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملMultiple Feature Extraction and Hierarchical Classifiers for Emotions Recognition
The recognition of the emotional states of speaker is a multidisciplinary research area that has received great interest in the last years. One of the most important goals is to improve the voiced-based human-machine interactions. Recent works on this domain use the prosodic features and the spectrum characteristics of speech signal, with standard classifier methods. Furthermore, for traditiona...
متن کاملRecognition of handwritten digits using sparse codes generated by local feature extraction methods
We investigate when sparse coding of sensory inputs can improve performance in a classification task. For this purpose, we use a standard data set, the MNIST database of handwritten digits. We systematically study combinations of sparse coding methods and neural classifiers in a two-layer network. We find that processing the image data into a sparse code can indeed improve the classification pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Granular Computing
سال: 2019
ISSN: 2364-4966,2364-4974
DOI: 10.1007/s41066-019-00158-6